Topic 6C - Weak Acids and Bases

Weak Acids and Bases

Acids:

$$HA (aq) + H_2O (l) \neq H_3O^+ (aq) + A^- (aq)$$

$$K_a = \frac{a_{H_3O^+}a_{A^-}}{a_{HA}} \approx \frac{[H_3O^+][A^-]}{[HA]}$$

$$pK_a = -\log K_a$$

Strong: $[HA] << [H_3O^+]$ $K_a >> 1$ Weak: $[HA] >> [H_3O^+]$ $K_a << 1$

Bases:

$$B(aq) + H_2O(l) \neq HB^+(aq) + OH^-(aq)$$

$$K_b = \frac{a_{HB^+}a_{OH^-}}{a_B} \approx \frac{[HB^+][OH^-]}{[B]}$$

$$pK_b = -\log K_b$$

Strong: [B] << [HB $^{+}$] $K_b >> 1$ Weak: [B] >> [HB $^{+}$] $K_b << 1$

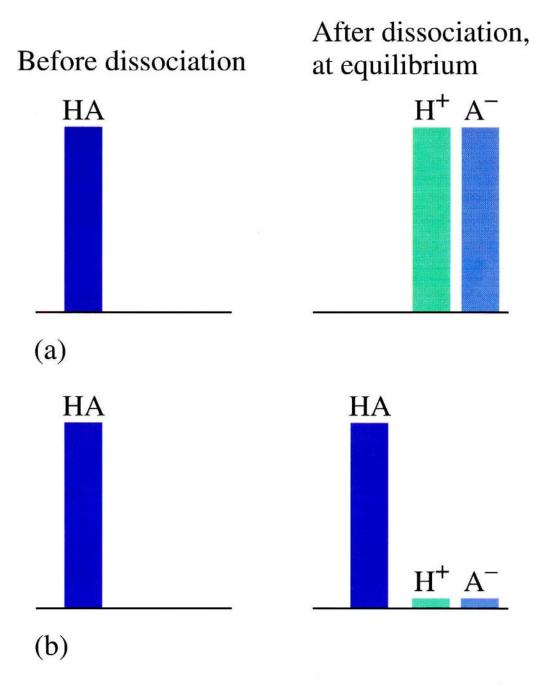


Figure 14.1 Graphical representations of strong and weak acid equilibria

2 of 12 12/21/2016 3:21

Table 12.1: Acid Ionization Constants

TABLE 12.1

Acid ionization constants $K_{\rm a}$ for selected monoprotic acids in aqueous solution

Acid name	Formula	$K_{\mathbf{a}}$	pK_a
Hydrofluoric	HF	7.0×10^{-4}	3.15
Hydrochloric	HCl	$\sim 1. \times 10^{7}$	−7.
Hydrobromic	HBr	$\sim 1. \times 10^9$	-9.
Hydroiodic	HI	$\sim 1. \times 10^{11}$	-11.
Hypochlorous	HCIO	3.0×10^{-8}	7.52
Chlorous	HCIO ₂	1.1×10^{-2}	1.96
Chloric	$HCIO_3$	$\sim 1. \times 10^{3}$	-3.
Perchloric	HCIO ₄	$\sim 1. \times 10^{7}$	−7.
Hypobromous	HBrO	2.1×10^{-9}	8.68
Bromic	$HBrO_3$	>1.	<0.
Hypoiodous	HIO	$\sim 1. \times 10^{-11}$	11.
Iodic	HIO_3	1.6×10^{-1}	0.80
Periodic	H_5IO_6	5.1×10^{-4}	3.29
Nitrous	HNO ₂	4.6×10^{-4}	3.34
Nitric	HNO_3	$2. \times 10^{1}$	-1.3
Hypophosphorous	H_3PO_2	$1. \times 10^{-2}$	2.0
Hydrocyanic	HCN	4.9×10^{-10}	9.31
Formic	НСООН	1.77×10^{-4}	3.75
Acetic	CH₃COOH	1.76×10^{-5}	4.75
Propionic	CH ₃ CH ₂ COOH	1.34×10^{-5}	4.87
Butyric	CH ₃ (CH ₂) ₂ COOH	1.54×10^{-5}	4.81
Chloroacetic	CH ₂ ClCOOH	1.40×10^{-3}	2.85
Dichloroacetic	CHCl ₂ COOH	3.32×10^{-2}	1.48
Trichloroacetic	CCl ₃ COOH	$2. \times 10^{-1}$	0.70
Benzoic	C ₆ H ₅ COOH	6.46×10^{-5}	4.19
Glycine	H ₂ NCH ₂ COOH	1.67×10^{-10}	9.78

Table 6-2 Ionization	on Constants of Ac	ids at 25°C		
Acid	НА	A	Ka	pK _a
Hydriodic	HI	I-	~1011	~-11
Hydrobromic	HBr	Br ⁻	$\sim 10^{9}$	~-9
Perchloric	HCIO ₄	ClO ₄	$\sim 10^{7}$	~-7
Hydrochloric	HCl	Cl ⁻	$\sim 10^{7}$	~-7
Chloric	HClO ₃	ClO ₃	$\sim 10^{3}$	~-3
Sulfuric (1)	H ₂ SO ₄	HSO ₄	$\sim 10^{2}$	~-2
Nitric	HNO ₃	NO ₃	~20	~-1.3
Hydronium ion	H ₃ O ⁺	H ₂ O	1	0.0
Iodic	HIO ₃	IO ₃	1.6×10^{-1}	0.80
Oxalic (1)	H ₂ C ₂ O ₄	$HC_2O_4^-$	5.9×10^{-2}	1.23
Sulfurous (1)	H ₂ SO ₃	HSO ₃	1.54×10^{-2}	1.81
Sulfuric (2)	HSO ₄	SO ₄ ²⁻	1.2×10^{-2}	1.92
Chlorous	HClO ₂	ClO ₂	1.1×10^{-2}	1.96
Phosphoric (1)	H ₃ PO ₄	$H_2PO_4^-$	7.52×10^{-3}	2.12
Arsenic (1)	H ₃ AsO ₄	H ₂ AsO ₄	5.0×10^{-3}	2.30
Chloroacetic	CH2CICOOH	CH ₂ CICOO ⁻	1.4×10^{-3}	2.85
Hydrofluoric	HF	F ⁻	6.6×10^{-4}	3.18
Nitrous	HNO ₂	NO_2^-	4.6×10^{-4}	3.34
Formic	НСООН	HCOO-	1.77×10^{-4}	3.75
Benzoic	C ₆ H ₅ COOH	C ₆ H ₅ COO ⁻	6.46×10^{-5}	4.19
Oxalic (2)	$HC_2O_4^-$	C ₂ O ₄ ²⁻	6.4×10^{-5}	4.19
Hydrazoic	HN ₃	N_3^-	1.9×10^{-5}	4.72
Acetic	CH₃COOH	CH ₃ COO ⁻	1.76×10^{-5}	4.75
Propionic	CH ₃ CH ₂ COOH	CH ₃ CH ₂ COO ⁻	1.34×10^{-5}	4.87
Pyridinium ion	HC ₅ H ₅ N ⁺	C ₅ H ₅ N	5.6×10^{-6}	5.25
Carbonic (1)	H ₂ CO ₃	HCO ₃	4.3×10^{-7}	6.37
Sulfurous (2)	HSO ₃	SO ₃ ²⁻	1.02×10^{-7}	6.91
Arsenic (2)	$H_2AsO_4^-$	HAsO ₄ ²⁻	9.3×10^{-8}	7.03
Hydrosulfuric	H ₂ S	HS ⁻	9.1×10^{-8}	7.04
Phosphoric (2)	$H_2PO_4^-$	HPO ₄ ²⁻	6.23×10^{-8}	7.21
Hypochlorous	HCIO	CIO-	3.0×10^{-8}	7.53
Hydrocyanic	HCN	CN-	6.17×10^{-10}	9.21
Ammonium ion	NH ₄ ⁺	NH ₃	5.6×10^{-10}	9.25
Carbonic (2)	HCO ₃	CO ₃ ²	4.8×10^{-11}	10.32
Arsenic (3)	HAsO ₄ ²⁻	AsO ₄ ³⁻	3.0×10^{-12}	11.53
Hydrogen peroxide	H ₂ O ₂	HO_2^-	2.4×10^{-12}	11.62
Phosphoric (3)	HPO_4^{2-}	PO ₄ ³⁻	2.2×10^{-13}	12.67
Water	H ₂ O	OH-	1.0×10^{-14}	14.00

TABLE 12.2

Weak base ionization constants $K_{\rm b}$ for selected monobasic nitrogen bases in aqueous solution

Base name	Formula	$K_{ m b}$	pK_b
Ammonia	NH ₃	1.79×10^{-5}	4.75
Methylamine	CH_3NH_2	4.4×10^{-4}	3.36
Ethylamine	CH ₃ CH ₂ NH ₂	4.7×10^{-4}	3.33
Propylamine	$CH_3(CH_2)_2NH_2$	3.8×10^{-4}	3.42
Butylamine	$CH_3(CH_2)_3NH_2$	4.1×10^{-4}	3.39
Dimethylamine	$(CH_3)_2NH$	5.1×10^{-4}	3.29
Trimethylamine	$(CH_3)_3N$	0.6×10^{-4}	4.22
Glycine	HOOCCH ₂ NH ₂	2.2×10^{-12}	11.66
Aniline	$C_6H_5NH_2$	4.2×10^{-10}	9.38
Pyridine	C_5H_5N	2.3×10^{-9}	8.64

Copyright © 2006 Pearson Education, Inc., Publishing as Benjamin Cummings

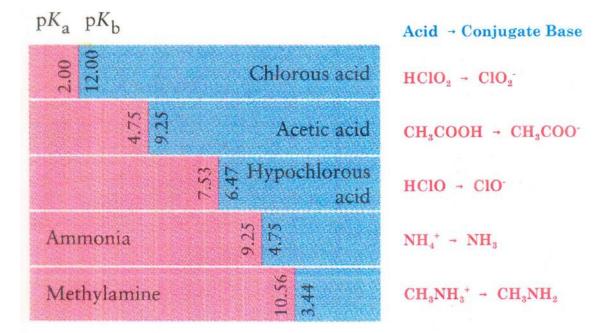
Conjugate Acids and Bases

HA
$$(aq)$$
 + H₂O (l) \neq H₃O⁺ (aq) + A⁻ (aq) acid base conjugate conjugate acid base

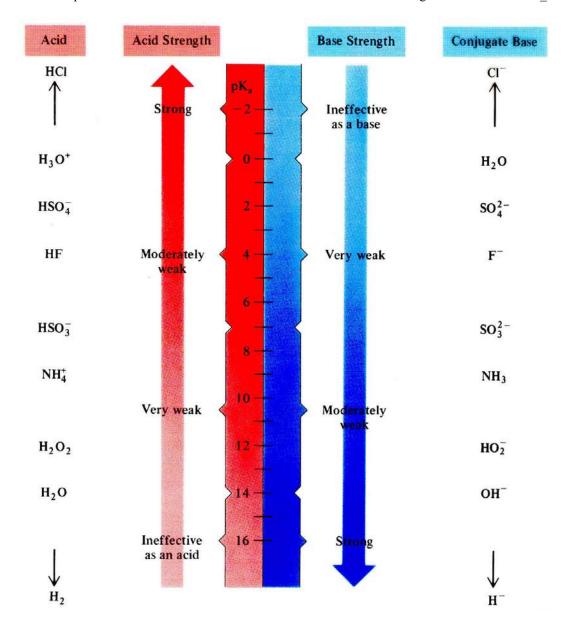
$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

$$K_b = \frac{[HA][OH^-]}{[A^-]}$$

Strong acid → Weak conjugate base (weak H⁺ acceptor)


Weak acid → Strong conjugate base (strong H⁺ acceptor)

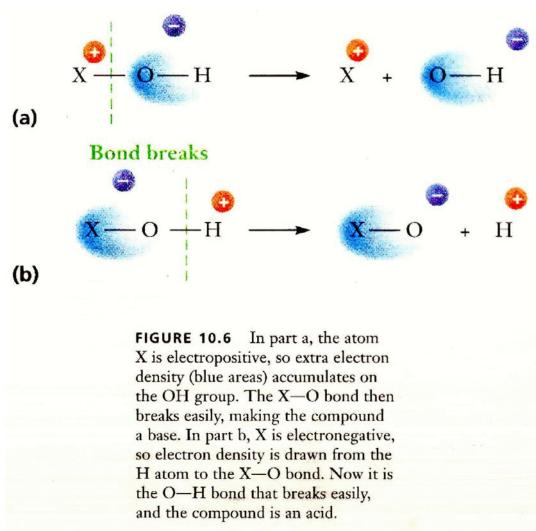
$$K_a \times K_b = \frac{[H_3O^+][A^-]}{[HA]} \times \frac{[HA][OH^-]}{[A^-]} = [H_3O^+][OH^-] = K_w$$


Thus,

$$pK_a + pK_b = pK_w = 14 \text{ (at 25°C)}$$

6 of 12 12/21/2016 3:21

FIGURE 11.17 As shown here for five conjugate acid–base pairs, the sum of the pK_a of an acid (pink) and the pK_b of its conjugate base (blue) is constant and equal to pK_w , which is 14.00 at 25°C.


Table of Acids with Ka and pKa Values*

CLAS

Acid	HA	A ⁻	Ka	pKa	Acid Strength	Conjugate Bas Strength
Hydroiodic	HI	Γ			*	
Hydrobromic	HBr	Br ⁻				
Perchloric	HClO ₄	ClO ₄	Strong acids complet	ely dissociate in	ag solution	
Hydrochloric	HCl	Cl ⁻	(Ka > 1, pKa < 1).			
Chloric	HClO ₃	ClO ₃	Conjugate bases of strong acids are ineffective bases.			
Sulfuric (1)	H ₂ SO ₄	HSO ₄				
Nitric	HNO ₃	NO ₃				
Hydronium ion	H ₃ O ⁺	H ₂ O	1	0.0		
Iodic	HIO ₃	IO ₃	1.6 x 10 ⁻¹	0.80	A	Ī
Oxalic (1)	H ₂ C ₂ O ₄	HC ₂ O ₄	5.9 x 10 ⁻²	1.23		
Sulfurous (1)	H ₂ SO ₃	HSO ₃	1.54 x 10 ⁻²	1.81		
Sulfuric (2)	HSO ₄	SO ₄ ² -	1.2 x 10 ⁻²	1.92		
Chlorous	HClO ₂	ClO ₂	1.1 x 10 ⁻²	1.96	1	
Phosphoric (1)	H ₃ PO ₄	H ₂ PO ₄	7.52 x 10 ⁻³	2.12	1	
Arsenic (1)	H ₃ AsO ₄	H ₂ AsO ₄	5.0 x 10 ⁻³	2.30	1	
Chloroacetic	CH₂CICOOH	CH ₂ CICOO	1.4 x 10 ⁻³	2.85	1	
Citric (1)	H ₃ C ₆ H ₅ O ₇	H ₂ C ₆ H ₅ O ₇	8.4 x 10 ⁻⁴	3.08] [
Hydrofluoric	HF	F ⁻	7.2 x 10 ⁻⁴	3.14	1 l	
Nitrous	HNO ₂	NO ₂	4.0 x 10 ⁻⁴	3.39	1	
Formic	НСООН	HCOO-	1.77 x 10 ⁻⁴	3.75	1	
Lactic	HCH ₃ H ₅ O ₃	CH ₃ H ₅ O ₃	1.38 x 10 ⁻⁴	3.86		
Ascorbic (1)	H ₂ C ₆ H ₆ O ₆	HC ₆ H ₆ O ₆	7.9 x 10 ⁻⁵	4.10		
Benzoic	C ₆ H ₅ COOH	C ₆ H ₅ COO	6.46 x 10 ⁻⁵	4.19		
Oxalic (2)	HC ₂ O ₄	$C_2O_4^{2-}$	6.4 x 10 ⁻⁵	4.19		
Hydrazoic	HN ₃	N ₃	1.9 x 10 ⁻⁵	4.72	1	
Citric (2)	H ₂ C ₆ H ₅ O ₇	HC ₆ H ₅ O ₇ ²	1.8 x 10 ⁻⁵	4.74	1	1 1
Acetic	CH ₃ COOH	CH ₃ COO	1.76 x 10 ⁻⁵	4.75	1	
Propionic	CH ₃ CH ₂ COOH	CH ₃ CH ₂ COO	1.34 x 10 ⁻⁵	4.87	1	
Pyridinium ion	C ₅ H ₄ NH ⁺	C ₅ H ₄ N	5.6 x 10 ⁻⁶	5.25	1 1	
Citric (3)	HC ₆ H ₅ O ₇ ²⁻	C ₆ H ₅ O ₇ ³⁻	4.0 x 10 ⁻⁶	5.40	-	
Carbonic (1)	H ₂ CO ₃	HCO ₃	4.3 x 10 ⁻⁷	6.37	-	
Sulfurous (2)	HSO ₄	SO ₄ ²⁻	1.02×10^{-7}	6.91	-	
Arsenic (2)	H ₂ AsO ₄	HAsO ₄ ²⁻	8/9.3 x 10 ⁻⁸	7.10/7.03	- I	
Arsenic (2)	n ₂ AsO ₄		$1.0 \times 10^{-7} / 9.1 \times 10^{-7}$	7.10/7.03	-	
Hydrosulfuric	H_2S	HS ⁻	8	7/7.04		
Phosphoric (2)	H ₂ PO ₄	HPO ₄ ² -	6.23 x 10 ⁻⁸	7.21		
Hypochlorous	HClO	ClO-	$3.5/3.0 \times 10^{-8}$	7.46/7.53		
Hypobromous	HBrO	BrO ⁻	2 x 10 ⁻⁹	8.70	1	
Hydrocyanic	HCN	CN ⁻	6.17 x 10 ⁻¹⁰	9.21	4	
Boric (1)	H ₃ BO ₃	H ₂ BO ₃	5.8 x 10 ⁻¹⁰	9.23	1	
Ammonium ion	NH ₄ ⁺	NH ₃	5.6 x 10 ⁻¹⁰	9.25	4	
Phenol	C ₆ H ₅ OH	C ₆ H ₅ O	1.6 x 10 ⁻¹⁰	9.80	1 1	
Carbonic (2)	HCO ₃	CO ₃ ²⁻	4.8 x 10 ⁻¹¹	10.32	1 1	1 1
Hypoiodous	HIO	IO ⁻	2 x 10 ⁻¹¹	10.70	1 1	
Arsenic (3)	HAsO ₄ ² -	AsO ₄ ³⁻	$6.0 \times 10^{-10}/3.0 \times 10^{-12}$	9.22/11.53		
Hydrogen peroxide	H ₂ O ₂	HO ₂ -	2.4 x 10 ⁻¹²	11.62		+
			1.6 x 10 ⁻¹²	11 00	+	1
Ascorbic (2)	HC ₆ H ₆ O ₆	C ₆ H ₆ O ₆ ² -	4.8/2.2 x 10 ⁻¹³	11.80	4	
Phosphoric (3)	HPO ₄ ² ·	PO ₄ ³ -	1.0 x 10 ⁻¹⁴	12.32/12.66	4	1
Water	H ₂ O	OH-		14.0	ag golytica	
Group I metal	hydroxides (LiOH,	NaOH, etc.)	Strong bases complet $(Kb > 1, pKb < 1)$.	tery dissociate in	aq solution	
0 11 11	droxides (Mg(OH) ₂	D (OII)		ons) of strong ba		

^{*} Compiled from Appendix 5 Chem 1A, B, C Lab Manual and Zumdahl 6th Ed. The pKa values for organic acids can be found in Appendix II of Bruice 5th Ed.

12/21/2016 3:21

See This Article on Relative Strengths of Acids and Bases

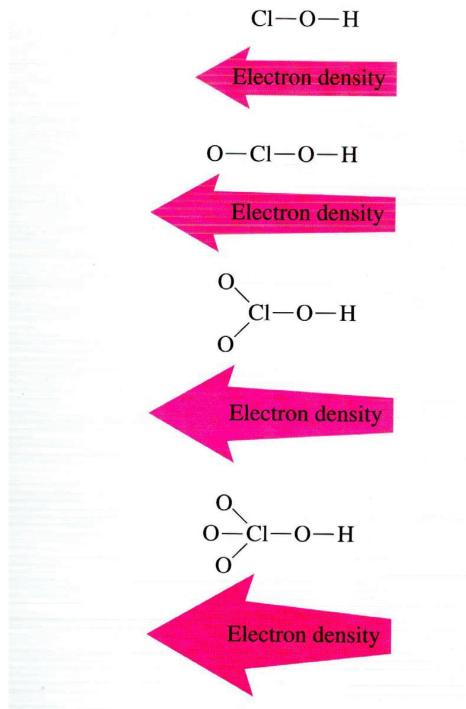


Figure 14.6
Electron withdrawing power of oxygen atoms in oxy chloro acids

11 of 12 12/21/2016 3:21

TABLE 10.3

X(OH) _m Very Weak	Ka	XO(OH) _m Weak	Ka	XO₂(OH) _m Strong	Ka	XO₃(OH) _m Very Strong	Ka
Cl(OH)	3×10^{-8}	H ₂ PO(OH)	8×10^{-2}	SeO ₂ (OH) ₂	10 ³	ClO ₃ (OH)	2 × 10
Te(OH) ₆	2×10^{-8}	IO(OH) ₅	2×10^{-2}	ClO ₂ (OH)	5×10^2	-708	
Br(OH)	2×10^{-9}	SO(OH) ₂	2×10^{-2}	$SO_2(OH)_2$	1×10^{2}		
As(OH) ₃	6×10^{-10}	ClO(OH)	1×10^{-2}	$NO_2(OH)$	2×10^{1}		
$B(OH)_3$	6×10^{-10}	$HPO(OH)_2$	1×10^{-2}	$IO_2(OH)$	1.6×10^{1}		
Ge(OH) ₄	4×10^{-10}	PO(OH) ₃	8×10^{-3}				
Si(OH) ₄	2×10^{-10}	AsO(OH) ₃	5×10^{-3}				
I(OH)	4×10^{-11}	SeO(OH) ₂	3×10^{-3}				
12 2		TeO(OH) ₂	3×10^{-3}				
		NO(OII)	5×10^{-4}				

TABLE 17.1 Acidity Constants of Some Alcohols and Phenols

Alcohol or phenol	pK_a	
$(CH_3)_3COH$	18.00	Weaker acid
CH ₃ CH ₂ OH	16.00	
HOH (water)	(15.74) $(K_w/55.$.5)
CH₃OH	15.54	
CF ₃ CH ₂ OH	12.43	
p-Aminophenol	10.46	
p-Methoxyphenol	10.21	
p-Methylphenol	10.17	
Phenol	9.89	
p-Chlorophenol	9.38	
p-Bromophenol	9.35	
p-Nitrophenol	7.15	
2,4,6-Trinitrophenol	0.60	Stronger acid

Alcohol: R-OH

Phenol: OH